Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 16 results ...

Aladağ, H and Işık, Z (2019) Design and construction risks in BOT type mega transportation projects. Engineering, Construction and Architectural Management, 26(10), 2223–42.

Almarri, K, Aljarman, M and Boussabaine, H (2019) Emerging contractual and legal risks from the application of building information modelling. Engineering, Construction and Architectural Management, 26(10), 2307–25.

Cajzek, R and KlanÅ¡ek, U (2019) Cost optimization of project schedules under constrained resources and alternative production processes by mixed-integer nonlinear programming. Engineering, Construction and Architectural Management, 26(10), 2474–508.

Derakhshanfar, H, Ochoa, J J, Kirytopoulos, K, Mayer, W and Tam, V W (2019) Construction delay risk taxonomy, associations and regional contexts. Engineering, Construction and Architectural Management, 26(10), 2364–88.

Fang, Y and Ng, S T (2019) Genetic algorithm for determining the construction logistics of precast components. Engineering, Construction and Architectural Management, 26(10), 2289–306.

  • Type: Journal Article
  • Keywords: Construction logistics; Genetic algorithm; Precast component; Logistic cost;
  • ISBN/ISSN: 0969-9988
  • URL: https://doi.org/10.1108/ECAM-09-2018-0386
  • Abstract:
    Precast construction has become increasingly popular in the construction industry. Nonetheless, the logistics of construction materials has been a neglected topic, and this neglect has resulted in delays and cost overruns. Careful planning that considers all of the factors affecting construction logistics can ensure project success. The purpose of this paper is to examine the potential for using genetic algorithms (GAs) to derive logistics plans for materials production, supply and consumption. Design/methodology/approach The proposed GA model is based on the logistics of precast components from the supplier’s production yard, to the intermediate warehouse and then to the construction site. Using an activity-based costing (ABC) approach, the model not only considers the project schedule, but also takes into account the production and delivery schedule and storage of materials. Findings The results show that GAs are suitable for solving time-cost trade-off problems. The optimization process helps to identify the activity start time during construction and the delivery frequency that will result in the minimal cost. What-if scenarios can be introduced to examine the effects of changes in construction logistics on project outcomes. Originality/value This paper presents a method for using GAs and an ABC approach to support construction logistics planning decisions. It will help construction planners and materials suppliers to establish material consumption and delivery schedules, rather than relying on subjective judgment.

Jin, H, Liu, S, Liu, C and Udawatta, N (2019) Optimizing the concession period of PPP projects for fair allocation of financial risk. Engineering, Construction and Architectural Management, 26(10), 2347–63.

Kumar Singla, H (2019) A comparative analysis of long-term performance of construction and non-construction IPOs in India. Engineering, Construction and Architectural Management, 26(10), 2447–73.

Kunieda, Y, Codinhoto, R and Emmitt, S (2019) Increasing the efficiency and efficacy of demolition through computerised 4D simulation. Engineering, Construction and Architectural Management, 26(10), 2186–205.

Kwofie, T E, Aigbavboa, C O and Machethe, S O (2019) Nature of communication performance in non-traditional procurements in South Africa. Engineering, Construction and Architectural Management, 26(10), 2264–88.

Lau, C H, Mesthrige, J W, Lam, P T and Javed, A A (2019) The challenges of adopting new engineering contract: a Hong Kong study. Engineering, Construction and Architectural Management, 26(10), 2389–409.

Loosemore, M, Sunindijo, R Y, Lestari, F, Kusminanti, Y and Widanarko, B (2019) Comparing the safety climate of the Indonesian and Australian construction industries. Engineering, Construction and Architectural Management, 26(10), 2206–22.

Oyewobi, L O, Oke, A E, Adeneye, T D and Jimoh, R A (2019) Influence of organizational commitment on work–life balance and organizational performance of female construction professionals. Engineering, Construction and Architectural Management, 26(10), 2243–63.

Qayoom, A and H.W. Hadikusumo, B (2019) Multilevel safety culture affecting organization safety performance: a system dynamic approach. Engineering, Construction and Architectural Management, 26(10), 2326–46.

Sinesilassie, E G, Tripathi, K K, Tabish, S Z S and Jha, K N (2019) Modeling success factors for public construction projects with the SEM approach: engineer’s perspective. Engineering, Construction and Architectural Management, 26(10), 2410–31.

Whang, S, Park, K S and Kim, S (2019) Critical success factors for implementing integrated construction project delivery. Engineering, Construction and Architectural Management, 26(10), 2432–46.

Xiong, B, Newton, S, Li, V, Skitmore, M and Xia, B (2019) Hybrid approach to reducing estimating overfitting and collinearity. Engineering, Construction and Architectural Management, 26(10), 2170–85.